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Abstract

In recent years, data streams have become an increasingly important area of research
for the computer science, database and statistics communities. Data streams are ordered
and potentially unbounded sequences of data points created by a typically non-stationary
data generating process. Common data mining tasks associated with data streams include
clustering, classification and frequent pattern mining. New algorithms for these types
of data are proposed regularly and it is important to evaluate them thoroughly under
standardized conditions.

In this paper we introduce stream, a research tool that includes modeling and simu-
lating data streams as well as an extensible framework for implementing, interfacing and
experimenting with algorithms for various data stream mining tasks. The main advantage
of stream is that it seamlessly integrates with the large existing infrastructure provided by
R. In addition to data handling, plotting and easy scripting capabilities, R also provides
many existing algorithms and enables users to interface code written in many program-
ming languages popular among data mining researchers (e.g., C/C++, Java and Python).
In this paper we describe the architecture of stream and focus on its use for data stream
clustering research. stream was implemented with extensibility in mind and will be ex-
tended in the future to cover additional data stream mining tasks like classification and
frequent pattern mining.

Keywords: data streams, data mining, clustering.

Note: A previous version of this manuscript was published in the Journal of Statistical Soft-
ware (Hahsler, Bolanos, and Forrest 2017a).

1. Introduction

Typical statistical and data mining methods (e.g., clustering, regression, classification and
frequent pattern mining) work with “static” data sets, meaning that the complete data set
is available as a whole to perform all necessary computations. Well known methods like k-
means clustering, linear regression, decision tree induction and the APRIORI algorithm to
find frequent itemsets scan the complete data set repeatedly to produce their results (Hastie,
Tibshirani, and Friedman 2001). However, in recent years more and more applications need to
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work with data which are not static, but are the result of a continuous data generating process
which is likely to evolve over time. Some examples are web click-stream data, computer
network monitoring data, telecommunication connection data, readings from sensor nets and
stock quotes. These types of data are called data streams and dealing with data streams
has become an increasingly important area of research (Babcock, Babu, Datar, Motwani,
and Widom 2002; Gaber, Zaslavsky, and Krishnaswamy 2005; Aggarwal 2007). Early on,
the statistics community also recognized the importance of the emerging field of statistical
analysis of massive data streams (see Keller-McNulty (2004)).

A data stream can be formalized as an ordered sequence of data points

Y = <Y1a)’27}’3a .. '>7

where the index reflects the order (either by explicit time stamps or just by an integer reflecting
order). The data points themselves are often simple vectors in multidimensional space, but can
also contains nominal/ordinal variables, complex information (e.g., graphs) or unstructured
information (e.g., text). The characteristic of continually arriving data points introduces an
important property of data streams which also poses the greatest challenge: the size of a data
stream is potentially unbounded. This leads to the following requirements for data stream
processing algorithms:

e Bounded storage: The algorithm can only store a very limited amount of data to sum-
marize the data stream.

e Single pass: The incoming data points cannot be permanently stored and need to be
processed at once in the arriving order.

e Real-time: The algorithm has to process data points on average at least as fast as the
data is arriving.

o Concept drift: The algorithm has to be able to deal with a data generating process which
evolves over time (e.g., distributions change or new structure in the data appears).

Most existing algorithms designed for static data are not able to satisfy all these requirements
and thus are only usable if techniques like sampling or time windows are used to extract small,
quasi-static subsets. While these approaches are important, new algorithms to deal with the
special challenges posed by data streams are needed and have been introduced over the last
decade.

Even though R represents an ideal platform to develop and test prototypes for data stream
mining algorithms, R currently does only have very limited infrastructure for data streams.
The following are some packages available from the Comprehensive R Archive Network!
related to streams:

Data sources: Random numbers are typically created as streams (see e.g., rstream (Leydold
2015) and rlecuyer (Sevcikova and Rossini 2012)). Financial data can be obtained
via packages like quantmod (Ryan 2016). Intra-day price and trading volume can be
considered a data stream. For Twitter, a popular micro-blogging service, packages like
streamR (Barbera 2014) and twitteR (Gentry 2015) provide interfaces to retrieve life
Twitter feeds.

"http://CRAN.R-project.org/
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Statistical models: Several packages provide algorithms for iteratively updating statistical
models, typically to deal with very large data. For example, factas (Bar 2014) imple-
ments iterative versions of correspondence analysis, PCA, canonical correlation analysis
and canonical discriminant analysis. For clustering, birch (Charest, Harrington, and
Salibian-Barrera 2012) implements BIRCH, a clustering algorithm for very large data
sets. The algorithm maintains a clustering feature tree which can be updated in an
iterative fashion. Although BIRCH was not developed as a data stream clustering al-
gorithm, it first introduced some characteristics needed for efficiently handling data
streams. Unfortunately, the birch package is no longer maintained and was removed
recently from CRAN. rEMM (Hahsler and Dunham 2015) implements a stand-alone
version of a pure data stream clustering algorithm enhanced with a methodology to
model a data stream’s temporal structure. Very recently RMOA (Wijffels 2014) was
introduced. The package interfaces data stream classification algorithms from the MOA
framework (see existing tools discussed in Section 2.4), however, the package focuses
not on data streams but on static data sets that do not fit into main memory.

Distributed computing frameworks: With the development of Hadoop?, distributed com-
puting frameworks to solve large scale computational problems have become very pop-
ular. HadoopStreaming (Rosenberg 2012) is available to use map and reduce scripts
written in R within the Java-based Hadoop framework. However, contrary the word
streaming in its name, HadoopStreaming does not refer to data streams. As Hadoop
itself, HadoopStreaming is used for batch processing and streaming in the name refers
only to the internal usage of pipelines for “streaming” the input and output between
the Hadoop framework and the used R scripts. A distributed framework for realtime
computation is Storm?. Storm builds on the idea of constructing a computing topology
by connecting spouts (data stream sources) with a set of bolts (computational units).
RStorm (Kaptein 2013) provides an environment to prototype bolts in R. Spouts are
represented as data frames. Bolts developed in RStorm can currently not directly be
used in Storm, but this is planned for the future (Kaptein 2014).

Even in the stream-related packages discussed above, data is still represented by data frames
or matrices which is suitable for static data but not ideal to represent streams.

In this paper we introduce the package stream (Hahsler, Bolafios, and Forrest 2017b) which
provides a framework to represent and process data streams and use them to develop, test
and compare data stream algorithms in R. We include an initial set of data stream generators
and data stream clustering algorithms in this package with the hope that other researchers
will use stream to develop, study and improve their own algorithms.

The paper is organized as follows. We briefly review data stream mining in Section 2. In
Section 3 we cover the basic design principles of the stream framework. Sections 4, 5 and 6
introduce details about creating data stream sources, performing data stream mining tasks,
and evaluating data stream clustering algorithms, respectively. Each of the three sections
include example code. Section 7 we provides comprehensive examples performing an ex-
perimental comparison of several data stream clustering algorithms and clustering a large,
high-dimensional data set. Section 8 concludes the paper.

’http://hadoop.apache.org/
3http://storm.incubator.apache.org/
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2. Data stream mining

Due to advances in data gathering techniques, it is often the case that data is no longer viewed
as a static collection, but rather as a potentially very large dynamic set, or stream, of incoming
data points. The most common data stream mining tasks are clustering, classification and
frequent pattern mining (Aggarwal 2007; Gama 2010). In this section we will give a brief
introduction to these data stream mining tasks. We will focus on clustering, since this is also
the current focus of package stream.

2.1. Data stream clustering

Clustering, the assignment of data points to (typically k) groups such that points within
each group are more similar to each other than to points in different groups, is a very ba-
sic unsupervised data mining task. For static data sets, methods like k-means, k-medoids,
hierarchical clustering and density-based methods have been developed among others (Jain,
Murty, and Flynn 1999). Many of these methods are available in tools like R, however, the
standard algorithms need access to all data points and typically iterate over the data multiple
times. This requirement makes these algorithms unsuitable for large data streams and led to
the development of data stream clustering algorithms.

Over the last 10 years many algorithms for clustering data streams have been proposed (see
Silva, Faria, Barros, Hruschka, Carvalho, and Gama (2013) for a current survey). Most
data stream clustering algorithms deal with the problems of unbounded stream size, and
the requirements for real-time processing in a single pass by using the following two-stage
online/offline approach introduced by Aggarwal, Han, Wang, and Yu (2003).

1. Online: Summarize the data using a set of &’ micro-clusters organized in a space effi-
cient data structure which also enables fast look-up. Micro-clusters were introduced for
CluStream by Aggarwal et al. (2003) based on the idea of cluster features developed for
clustering large data sets with the BIRCH algorithm (Zhang, Ramakrishnan, and Livny
1996). Micro-clusters are representatives for sets of similar data points and are created
using a single pass over the data (typically in real time when the data stream arrives).
Micro-clusters are often represented by cluster centers and additional statistics such as
weight (local density) and dispersion (variance). Each new data point is assigned to
its closest (in terms of a similarity function) micro-cluster. Some algorithms use a grid
instead and micro-clusters are represented by non-empty grid cells (e.g., D-Stream by
Tu and Chen (2009) or MR-Stream by Wan, Ng, Dang, Yu, and Zhang (2009)). If a
new data point cannot be assigned to an existing micro-cluster, a new micro-cluster
is created. The algorithm might also perform some housekeeping (merging or deleting
micro-clusters) to keep the number of micro-clusters at a manageable size or to remove
information outdated due to a change in the stream’s data generating process.

2. Offline: When the user or the application requires a clustering, the k' micro-clusters
are reclustered into k < k' final clusters sometimes referred to as macro-clusters. Since
the offline part is usually not regarded time critical, most researchers use a conventional
clustering algorithm where micro-cluster centers are regarded as pseudo-points. Typical
reclustering methods involve k-means or clustering based on the concept of reachability
introduced by DBSCAN (Ester, Kriegel, Sander, and Xu 1996). The algorithms are
often modified to take also the weight of micro-clusters into account.



Michael Hahsler, Matthew Bolanos, John Forrest

The most popular approach to adapt to concept drift (changes of the data generating process
over time) is to use the exponential fading strategy introduced first for DenStream by Cao,
Ester, Qian, and Zhou (2006). Micro-cluster weights are faded in every time step by a factor
of 27, where XA > 0 is a user-specified fading factor. This way, new data points have more
impact on the clustering and the influence of older points gradually disappears. Alternative
models use sliding or landmark windows. Details of these methods as well as other data
stream clustering algorithms are discussed in the survey by Silva et al. (2013).

2.2. Outlier detection

The outlier detection in data streams is a popular task, often used for risk management, e.g.,
fraud and intrusion detection. From the end-user point of view, outliers are important and
meaningful data points that are standing out from the usual populations (clusters) that can
be found in data streams (Silva et al. 2013). This differentiation between clusters and outliers
can be statistically or density-based.

We build special outlier detectors to detect them in big data streams. Detecting small statis-
tical (or density) differences between clusters and outliers is the key feature of a good outlier
detector. Outlier detectors that can detect outlier smaller statistical or density variations are
better. This leads us to the outlier detector breaking point, which is the smaller statistical
or density variation for which the outlier detector still can detect some outlier.

End-user interest in outliers requires that detected outliers get reported back to the user in a
limited time frame, which is directly correlated with data stream velocity.

Such a time requirement requires a more fine-grained approach than the previously described
two-stage approach. For outlier detectors, such as Continuous Outlier Detection (COD),
Micro-cluster Continuous Outlier Detection (MCOD) (Kontaki, Gounaris, Papadopoulos,
Tsichlas, and Manolopoulos (2016)), and Statistical Hierarchical Clustering (SHC) (Krleza,
Vrdoljak, and Bréié (2020)), this means processing each data point retrieved from the input
data stream in two steps. In the first step, outlier detectors are trying to classify the input
data point. If the input data point does not belong to any known cluster (population), the
outlier detector must decide whether the data point represents a new outlier.

The evolving nature of the input data stream causes outliers to become inliers, which repre-
sents an issue while trying to assess the outlier detection correctness. In such cases, outlier
detectors must have outlier tracking capabilities, which allows users to re-check each out-
lier individually and determine whether a previously detected outlier is still an outlier, or it
evolved into an inlier in the meantime.

2.3. Other popular data stream mining tasks

Classification, learning a model in order to assign labels to new, unlabeled data points is a well
studied supervised machine learning task. Methods include naive Bayes, k-nearest neighbors,
classification trees, support vector machines, rule-based classifiers and many more (Hastie
et al. 2001). However, as with clustering these algorithms need access to the complete training
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data several times and thus are not suitable for data streams with constantly arriving new
training data and concept drift.

Several classification methods suitable for data streams have been developed. Examples are
Very Fast Decision Trees (VFDT) (Domingos and Hulten 2000) using Hoeffding trees, the time
window-based Online Information Network (OLIN) (Last 2002) and On-demand Classification
(Aggarwal, Han, Wang, and Yu 2004) based on micro-clusters found with the data-stream
clustering algorithm CluStream (Aggarwal et al. 2003). For a detailed discussion of these
and other methods we refer the reader to the survey by Gaber, Zaslavsky, and Krishnaswamy
(2007).

Another common data stream mining task is frequent pattern mining. The aim of frequent
pattern mining is to enumerate all frequently occurring patterns (e.g., itemsets, subsequences,
subtrees, subgraphs) in large transaction data sets. Patterns are then used to summarize the
data set and can provide insights into the data. Although finding all frequent patterns in large
data sets is a computationally expensive task, many efficient algorithms have been developed
for static data sets. A prime example is the APRIORI algorithm (Agrawal, Imielinski, and
Swami 1993) for frequent itemsets. However, these algorithms use breath-first or depth-first
search strategies which results in the need to pass over each transaction (i.e., data point)
several times and thus makes them unusable for the case where transactions arrive and need
to be processed in a streaming fashion. Algorithms for frequent pattern mining in streams are
discussed in the surveys by Jin and Agrawal (2007), Cheng, Ke, and Ng (2008) and Vijayarani
and Sathya (2012).

2.4. Existing tools

MOA* (short for Massive Online Analysis) is a framework implemented in Java for stream
classification, regression and clustering (Bifet, Holmes, Kirkby, and Pfahringer 2010). It
was the first experimental framework to provide easy access to multiple data stream mining
algorithms, as well as to tools for generating data streams that can be used to measure and
compare the performance of different algorithms. Like WEKA (Witten and Frank 2005),
a popular collection of machine learning algorithms, MOA is also mainly developed by the
University of Waikato and its graphical user interface (GUI) and workflow are similar to those
of WEKA. Classification results are shown as text, while clustering results have a visualization
component that shows both the evolution of the clustering (in two dimensions) and various
performance metrics over time (Kranen, Kremer, Jansen, Seidl, Bifet, Holmes, and Pfahringer
2010).

SAMOAS (Scalable Advanced Massive Online Analysis) is a recently introduced tool for dis-
tributed stream mining with Storm or the Apache S4 distributed computing platform. Sim-
ilar to MOA it is implemented in Java, and supports the basic data stream mining tasks of
clustering, classification and frequent pattern mining. Some MOA clustering algorithms are
interfaced in SAMOA. SAMOA currently does not provide a GUI.

Another distributed processing framework and streaming machine learning library is Jabatus®.
It is implemented in C++ and supports classification, regression and clustering. For clustering
it currently supports k-means and Gaussian Mixture Models (version 0.5.4).

“http://moa.cms.waikato.ac.nz/
Shttp://yahoo.github.io/samoa/
Shttp://jubat.us/en/
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Commercial data stream mining platforms include IBM InfoSphere Streams and Microsoft
StreamlInsight (part of MS SQL Server). These platforms aim at building applications using
existing data stream mining algorithms rather than developing and testing new algorithms.

MOA is currently the most complete framework for data stream clustering research and it
is an important pioneer in experimenting with data stream algorithms. MOA’s advantages
are that it interfaces with WEKA, provides already a set of data stream classification and
clustering algorithms and it has a clear Java interface to add new algorithms or use the
existing algorithms in other applications.

A drawback of MOA and the other frameworks for R users is that for all but very simple
experiments custom Java code has to be written. Also, using MOA’s data stream mining
algorithms together with the advanced capabilities of R to create artificial data and to analyze
and visualize the results is currently very difficult and involves running code and copying data
manually. The recently introduce R-package RMOA (Wijffels 2014) interfaces MOA’s data
stream classification algorithms, however, it focuses on processing large data sets that do not
fit into main memory and not on data streams.

3. The stream framework

The stream framework provides an R-based alternative to MOA which seamlessly integrates
with the extensive existing R infrastructure. Since R can interface code written in many
different programming languages (e.g., C/C++, Java, Python), data stream mining algorithms
in any of these languages can be easily integrated into stream. stream is based on several
packages including fpc (Hennig 2014), clue (Hornik 2017), cluster (Maechler, Rousseeuw,
Struyf, Hubert, and Hornik 2014), clusterGeneration (Qiu and Joe. 2015), MASS (Venables
and Ripley 2002), proxy (Meyer and Buchta 2017), and others. The stream extension package
streamMOA (Hahsler and Bolanos 2015) also interfaces the data stream clustering algorithms
already available in MOA using the rJava package by Urbanck (2016).

We will start with a very short example to make the introduction of the framework and its
components easier to follow. After loading stream, we create a simulated data stream with
data points drawn from three random Gaussians in 2D space. Note that we set the random
number generator seed every time when we create simulated data sets to get reproducible
results.

R> library("stream")
R> set.seed(1000)
R> stream <- DSD_Gaussians(k = 3, d = 2)

Next, we create an instance of the density-based data stream clustering algorithm D-Stream
which uses grid cells as micro-clusters. We specify the grid cell size (gridsize) as .1 and
require that the density of a grid cell (Cm) needs to be at least 1.2 times the average cell
density to become a micro-cluster. Then we update the model with the next 500 data points
from the stream.

R> dstream <- DSC_DStream(gridsize = .1, Cm = 1.2)
R> update(dstream, stream, n = 500)
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Figure 1: Data stream clustering result of D-Stream on a simple simulated data set with
three random Gaussians. Micro-clusters are shown as circles and macro-clusters are shown
as crosses (size represents weight).

Finally, we perform reclustering using k-means with three clusters and plot the resulting micro
and macro clusters (see Figure 1).

R> km <- DSC_Kmeans(k = 3)
R> recluster (km, dstream)
R> plot(km, stream, type = "both")

As shown in this example, the stream framework consists of two main components:

1. Data stream data (DSD) simulates or connects to a data stream.

2. Data stream task (DST) performs a data stream mining task. In the example above,
we performed twice a data stream clustering (DSC) task.

Figure 2 shows a high level view of the interaction of the components. We start by creating
a DSD object and a DST object. Then the DST object starts receiving data form the DSD
object. At any time, we can obtain the current results from the DST object. DSTs can
implement any type of data stream mining task (e.g., classification or clustering).

Since stream mining is a relatively young field and many advances are expected in the near
future, the object oriented framework in stream was developed with easy extensibility in
mind. We are using the S3 class system (Chambers and Hastie 1992) throughout and, for
performance reasons, the R-based algorithms are implemented using reference classes. The
framework provides for each of the two core components a lightweight interface definition (i.e.,
an abstract class) which can be easily implemented to create new data stream types or to
interface new data stream mining algorithms. Developers can also extend the infrastructure
with new data mining tasks. Details for developers interested in extending stream can be
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Data Stream Data Data Stream Task

Figure 2: A high level view of the stream architecture.

found in the package’s vignette and manual pages (Hahsler et al. 2017b). In the following we
will concentrate on describing the aspects of the framework which are important to a users
interested in dealing with data streams and performing data stream mining tasks in R.

4. Data stream data (DSD)

4.1. Introduction

The first step in the stream workflow is to select a data stream implemented as a data stream
data (DSD) object. This object can be a management layer on top of a real data stream, a
wrapper for data stored in memory or on disk, or a generator which simulates a data stream
with know properties for controlled experiments. Figure 3 shows the relationship (inheritance
hierarchy) of the DSD classes as a UML class diagram (Fowler 2003). All DSD classes extend
the abstract base class DSD. There are currently two types of DSD implementations, classes
which implement R-based data streams (DSD_R) and MOA-based stream generators (DSD_MOA)
provided in streamMOA. Note that abstract classes define interfaces and only implement
common functionality. Only implementation classes can be used to create objects (instances).
This mechanism is not enforced by S3, but is implemented in stream by providing for all
abstract classes constructor functions which create an error.

The package stream provides currently the following set of DSD implementations:

o Simulated streams with static structure.

— DSD_BarsAndGaussians generates two uniformly filled rectangular and two Gaus-
sians clusters with different density.

— DSD_Gaussians generates randomly placed static clusters with random multivari-
ate Gaussian distributions. Allows generating and marking outliers for outlier
detectors.

— DSD_mlbenchData provides streaming access to machine learning benchmark data
sets found in the mlbench package (Leisch and Dimitriadou 2012).

— DSD_mlbenchGenerator interfaces the generators for artificial data sets defined in
the mlbench package.

— DSD_Target generates a ball in circle data set.

— DSD_UniformNoise generates uniform noise in a d-dimensional (hyper) cube.

e Simulated streams with concept drift.
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— DSD_Benchmark, a collection of simple benchmark problems including splitting and
joining clusters, and changes in density or size. This collection is indented to grow
into a comprehensive benchmark set used for algorithm comparison.

— DSD_MG, a generator to specify complex data streams with concept drift. The shape
as well as the behavior of each cluster over time (changes in position, density and
dispersion) can be specified using keyframes (similar to keyframes in animation
and film making) or by mathematical functions.

— DSD_RandomRBFGeneratorEvents (streamMOA) generates streams using radial
base functions with noise. Clusters move, merge and split.

« Connectors to real data and streams.

— DSD_Memory provides a streaming interface to static, matrix-like data (e.g., a data
frame, a matrix) in memory which represent a fixed portion of a data stream.
Matrix-like objects also include large objects potentially stored on disk like ffdf
from package ff (Adler, Gléaser, Nenadic, Oehlschligel, and Zucchini 2014) or
big.matrix from package bigmemory (Kane, Emerson, and Weston 2013). Any
matrix-like object which implements at least row subsetting with " [" and dim()
can be used. Using these, stream mining algorithms (e.g., clustering) can be per-
formed on data that does not fit into main memory. In addition, DSD_Memory can
directly create a static copy of a portion of another DSD object to be replayed in
experiments several times.

— DSD_ReadCSV reads data line by line in text format from a file or an open connection
and makes it available in a streaming fashion. This way data that is larger than
the available main memory can be processed. Connections can be used to read
from real-time data streams.

— DSD_ReadDB provides an interface to an open result set from a SQL query to a
relational database. Any of the many database management systems with a DBI
interface (R Special Interest Group on Databases 2014) can be used.

e In-flight stream operations.

— DSD_ScaleStream can be used to standardize (centering and scaling) data in a
data stream in-flight.

All DSD implementations share a simple interface consisting of the following two functions:

1. A creator function. This function typically has the same name as the class. By definition
the function name starts with the prefix DSD_. The list of parameters depends on the
type of data stream it creates. The most common input parameters for the creation
of DSD classes for clustering are k, the number of clusters (i.e., dense areas), and d,
the number of dimensions. A full list of parameters can be obtained from the help
page for each class. The result of this creator function is not a data set but an object
representing the stream’s properties and its current state.

2. A data generating function
get_points(x, n = 1, outofpoints = c("stop", "warn", "ignore") , ...).
This function is used to obtain the next data point (or next n data points) from the
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Figure 3: Overview of the data stream data (DSD) class structure.

stream represented by object x. Parameter outofpoints controls how to deal with a
stream which runs out of points (the stream source does not provide more points at this
time). For "warn" and "ignore" all (possibly zero) available points are returned. For
clustering data, the data points are returned as a data frame with each row representing
a single data point. For other types of data streams (e.g., transaction data for frequent
pattern mining), the returned points might be represented in a different, appropriate
way (e.g., as a list).

Next to these core functions several utility functions like print (), plot () and write_stream(),
to save a part of a data stream to disk, are provided by stream for class DSD and are avail-
able for all data stream sources. Different data stream implementations might have additional
functions implemented. For example, DSD_Gaussians, DSD_Memory and DSD_ReadCSV provide
reset_stream() to reset the position in the stream to its beginning.

Next we give some examples of how to manage data streams using stream. In Section 4.2
we start with creating a data stream using different implementations of the DSD class. The
second example in Section 4.5 shows how to save and read stream data to and from disk.
Section 4.6 gives examples for how to reuse the same data from a stream in order to perform
comparison experiments with multiple data stream mining algorithms on exactly the same
data. All examples contain the complete code necessary for replication.

4.2. Example: Creating a data stream

R> library("stream")

R> set.seed(1000)

R> stream <- DSD_Gaussians(k = 3, d = 3, noise = .05, p = c(.5, .3, .1))
R> stream

Mixture of Gaussians
Class: DSD_Gaussians, DSD_R, DSD_data.frame, DSD
With 3 clusters and O outliers in 3 dimensions

After loading the stream package we call the creator function for the class DSD_Gaussians
specifying the number of clusters as £k = 3 and a data dimensionality of d = 3 with an
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added noise of 5% of the generated data points. Each cluster is represented by a multivariate
Gaussian distribution with a randomly chosen mean (cluster center) and covariance matrix.
New data points are requested from the stream using get_points(). When a new data point
is requested from this generator, a cluster is chosen randomly (using the probability weights
in p) and then a point is drawn from the multivariate Gaussian distribution given by the
mean and covariance matrix of the cluster. Noise points are generated in a bounding box
from a d-dimensional uniform distribution. The following instruction requests n = 5 new data
points.

R> p <- get_points(stream, n = 5)
R>p

X1 X2 X3
1 0.720 0.274 0.283
2 0.556 0.221 0.530
3 0.539 0.204 0.550
4 0.585 0.203 0.381
5 0.895 0.463 0.742

The result is a data frame containing the data points as rows. For evaluation it is often
important to know the ground truth, i.e., from which cluster each point was created. Many
generators also return the ground truth (class or cluster label) if they are called with class
= TRUE.

R> p <- get_points(stream, n = 100, class = TRUE)
R> head(p, n = 10)

X1 X2 X3 class

1 0.741 0.445 0.236 1
2 0.589 0.394 0.188 1
3 0.714 0.289 0.269 1
4 0.733 0.221 0.374 1
5 0.610 0.347 0.217 1
6 0.760 0.208 0.305 1
7 0.746 0.270 0.357 NA
8 0.817 0.204 0.285 1
9 0.574 0.250 0.566

10 0.674 0.271 0.203 1

Note that the data was created by a generator with 5% noise. Noise points do not belong to
any cluster and thus have a class label of NA.

Next, we plot 500 points from the data stream to get an idea about its structure.

R> plot(stream, n = 500)
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Figure 4: Plotting 500 data points from the data stream.

The resulting scatter plot matrix is shown in Figures 4. The assignment values are automat-
ically used to distinguish between clusters using color and different plotting symbols. Noise
points are plotted as gray dots. The data can also be projected on its first two principal
components using method="pc".

R> plot(stream, n = 500, method = "pc")

Figures 5 show the projected data.

Stream also supports data streams which contain concept drift. Several examples of such
data stream generators are collected in DSD_Benchmark. We create an instance of the first
benchmark generator which creates two clusters moving in two-dimensional space. One moves
from top left to bottom right and the other one moves from bottom left to top right. Both
clusters overlap when they meet exactly in the center of the data space.

R> set.seed(1000)
R> stream <- DSD_Benchmark(1)
R> stream

13
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Figure 5: Plotting 500 data points from the data stream projected onto its first two principal
components.

Benchmark 1: Two clusters moving diagonally from left to right, meeting in
the center (5% noise).

Class: DSD_MG, DSD_R, DSD_data.frame, DSD

With 2 clusters in 2 dimensions. Time is 1

To show concept drift, we request four times 250 data points from the stream and plot them.
To fast-forward in the stream we request 1400 points in between the plots and ignore them.

R> for(i in 1:4) {

+ plot(stream, 250, xlim = c(0, 1), ylim = c(0, 1))
+ tmp <- get_points(stream, n = 1400)

+ }

Figure 6 shows the four plots where clusters move over time. Arrows are added to high-
light the direction of cluster movement. An animation of the data can be generated using
animate_data(). We use reset_stream() to start the animation at the beginning of the
stream.

R> reset_stream(stream)
R> animate_data(stream, n = 10000, horizon = 100,
+ xlim = c(0, 1), ylim = c(0, 1))

Animations are recorded using package animation (Xie 2015) and can be replayed using
ani.replay().

R> library("animation")
R> animation::ani.options(interval = .1)
R> ani.replay()
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Animations can also be saved as an animation embedded in a HTML document or an animated
image in the Graphics Interchange Format (GIF) which can easily be used in presentations.

R> saveHTML (ani.replay())
R> saveGIF(ani.replay())

More formats for saving the animation are available in package animation.

4.3. Example: Outlier generating data streams

We can use DSD_Gaussians to generate and mark outliers as well. We define a data stream
consisting of 10000 data points.

R> library("stream")

R> set.seed(1000)

R> stream <- DSD_Gaussians(k = 3, d = 2, outliers = 4,

+ outlier options = list(outlier_horizon = 10000),
+ separation = 0.3, space_limit = c(0,1))

Next, we plot 10000 points from the data stream, which can be seen in Figure 7.

We can obtain data points from the stream, asking for the outlier marks.

R> reset_stream(stream)
R> p <- get_points(stream, n = 10000, outlier = TRUE)
R> head(p)

X1 X2
1 0.211 0.351
2 0.770 0.773
3 0.938 0.851
4 0.351 0.346
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5 0.694 0.302
6 0.703 0.284

Outlier marks can be retrieved from the outlier attribute.

R> out_marks <- attr(p, "outlier")
R> sum(out_marks)

[1] 4

We can see that four data points were marked as outliers. These outliers were generated at
positions

R> which(out_marks)
[1] 2250 2535 4647 4919

and can be seen also in Figure 7. Such data stream generators can be used in outlier detector
assessment, since they generate the ground truth for the true positive outliers.

4.4. Example: Advanced statistical data streams

DSD_Gaussians has capabilities to generate more complex statistical data streams. In the
previous examples, we used simple cluster and outlier generating capabilities and Euclidean
distance for their separation.

Maximal variance and space limitations

In case we do not predefine covariance matrices by using sigma parameter, DSD_Gaussians
can randomly generate covariance matrices. Maximal variance used to generate covariance
matrices can be limited, which comes together with space limitation to fit clusters.

R> library("stream")
R> set.seed(1000)

R> streaml <- DSD Gaussians(k = 3, d = 2, variance_ limit = 0.2,
+ space_limit = c(0, 5))

R> stream2 <- DSD_Gaussians(k = 3, d = 2, variance limit = 2,
+ space_limit = c(0, 5))

Next, we plot 1000 points from the data stream, which can be seen in Figure 8. As seen in
Figure 8b, we can experience overlapping of clusters due to high maximal variance limit.

Keeping clusters su ciently separated

To keep cluster from overlapping we can use two separation distance measures: Euclidean and
Mahalanobis (the statistical distance). While Euclidean distance can be used to some extent,
it might not keep clusters cleanly separated at all times, since cluster size highly depend on
the related covariance matrix. This is the reason why we want do use statistical distance
(Mahalanobis) to control cluster separation.
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Figure 8: Data points from DSD_Gaussians having maximal variance limit and space limits.

R> library("stream")
R> set.seed(1000)
R> streaml <- DSD Gaussians(k = 5, d = 2, variance limit = 0.2,

+ space_limit = c(0, 7),
+ separation_type = "Mahalanobis",
+ separation = 4)

R> set.seed(1000)
R> stream2 <- DSD_Gaussians(k = 5, d = 2, variance_limit = 0.2,

+ space_limit = c(0, 15),
+ separation_type = "Mahalanobis",
+ separation = 10)

Plots comprising 1000 points from the data stream can be seen in Figure 9.

Adding outliers

For assessment of outlier detectors, we want to generate some number of outliers in the
data stream. Each data point (o in total) that represents an outlier need to be marked
and statistically just enough separated from clusters so that outlier detectors could pick this
separation. In DSD_Gaussians, a concept of virtual covariance (Krleza et al. (2020)) is used
to create a statistically significant free area around outliers. This can be controlled through
outlier_virtual_variance parameter.

R> library("stream")

R> set.seed(1000)

R> streaml <- DSD_Gaussians(k = 5, d = 2, outliers = 5, variance limit = 0.2,
+ space_limit = c(0, 15), separation = 4,
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Figure 10: Data points from DSD_Gaussians having distinct outlier virtual variances.

4.5. Example: Reading and writing data streams

Although data streams are potentially unbounded by definition and thus storing the complete
stream is infeasible, it is often useful to store parts of a stream on disk. For example, a
small part of a stream with an interesting feature can be used to test how a new algorithm
handles this particular case. stream has support for reading and writing parts of data streams
through R connections which provide a set of functions to interface file-like objects including
files, compressed files, pipes, URLs or sockets (R Foundation 2011).

We start the example by creating a DSD object.

R> library("stream")
R> set.seed(1000)
R> stream <- DSD_Gaussians(k = 3, d = 5)

Next, we write 100 data points to disk using write_stream().
R> write_stream(stream, "data.csv", n = 100, sep = ",")

write_stream() accepts a DSD object, and then either a connection or a file name. The
instruction above creates a new file called dsd_data.csv. The sep parameter defines how
the dimensions in each data point (row) are separated. Here a comma is used to create a
comma separated values file. The actual writing is done by R’s write.table() function and
additional parameters are passed on. Data points are requested blockwise (defaults to 100,000
points) from the stream and then written to the connection. This way the only restriction for
the size of the written stream are limitations at the receiving end (e.g., the available storage).

Finally, parameters class and write_outliers can be used to control writing of the class
information and outlier marks. These two details are stored in fields named "class" and
"outlier" respectively, and can be read again.
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4.6. Example: Replaying a data stream

An important feature of stream is the ability to replay portions of a data stream. With
this feature we can capture a special feature of the data (e.g., an anomaly) and then adapt
our algorithm and test if the change improved the behavior on exactly that data. Also, this
feature can be used to conduct experiments where different algorithms need to be compared
using exactly the same data.

There are several ways to replay streams. As described in the previous section, we can write
a portion of a stream to disk with write_stream() and then use DSD_ReadCSV to read the
stream portion back every time it is needed. However, often the interesting portion of the
stream is small enough to fit into main memory or might be already available as a matrix or a
data frame in R. In this case we can use the DSD class DSD_Memory which provides a stream
interface for a matrix-like objects.

For illustration purposes, we use data for four major European stock market indices available
in R as a data frame.

R> data("EuStockMarkets", package = "datasets")
R> head(EuStockMarkets)

DAX SMI CAC FTSE
[1,] 1629 1678 1773 2444
[2,] 1614 1688 1750 2460
[3,]1 1607 1679 1718 2448
[4,] 1621 1684 1708 2470
[5,] 1618 1687 1723 2485
[6,] 1611 1672 1714 2467

Next, we create a DSD_Memory object. The number of true clusters k is unknown.

R> replayer <- DSD_Memory (EuStockMarkets, k = NA)
R> replayer

Memory Stream Interface

Class: DSD_Memory, DSD_R, DSD_data.frame, DSD

With NA clusters and O outliers in 4 dimensions

Contains 1860 data points - currently at position 1 - loop is FALSE

Every time we get a point from replayer, the stream moves to the next position (row) in the
data.

R> get_points(replayer, n = 5)

DAX SMI CAC FTSE
1629 1678 1773 2444
1614 1688 1750 2460
1607 1679 1718 2448
1621 1684 1708 2470
1618 1687 1723 2485

g W N
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R> replayer

Memory Stream Interface

Class: DSD_Memory, DSD_R, DSD_data.frame, DSD

With NA clusters and O outliers in 4 dimensions

Contains 1860 data points - currently at position 6 - loop is FALSE

Note that the stream is now at position 6. The stream only has 1854 points left and the
following request for more than the available number of data points results in an error.

R> get_points(replayer, n = 2000)

Error in get_points.DSD_Memory(replayer, n = 2000)
Not enough data points left in stream! Only 1855 are available.

Note that with the parameter outofpoints this behavior can be changed to a warning or
ignoring the problem.

DSD_Memory and DSD_ReadCSV can be created to loop indefinitely, i.e., start over once the last
data point is reached. This is achieved by passing loop = TRUE to the creator function. The
current position in the stream for those two types of DSD classes can also be reset to the
beginning of the stream or, for DSD_Memory, to an arbitrary position via reset_stream().
Here we set the stream to position 100.

R> reset_stream(replayer, pos = 100)
R> replayer

Memory Stream Interface

Class: DSD_Memory, DSD_R, DSD_data.frame, DSD

With NA clusters and O outliers in 4 dimensions

Contains 1860 data points - currently at position 100 - loop is FALSE

DSD_Memory also accepts other matrix-like objects. This includes data shared between pro-
cesses or data that is too large to fit into main memory represented by memory-mapped files
using ffdf objects from package ff (Adler et al. 2014) or big.matrix objects from pack-
age bigmemory (Kane et al. 2013). In fact any object that provides basic matrix functions
like dim() and subsetting with " [" can be used.

5. Data stream task (DST)

After choosing a DSD class to use as the data stream source, the next step in the workflow
is to define a data stream task (DST). In stream, a DST refers to any data mining task that
can be applied to data streams. The design is flexible enough for future extensions including
even currently unknown tasks. Figure 11 shows the class hierarchy for DST. It is important
to note that the DST base class is shown merely for conceptual purpose and is not directly
visible in the code. The reason is that the actual implementations of data stream operators
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Figure 11: Overview of the data stream task (DST) class structure with subclasses for data
stream operators (DSO), clustering (DSC), classification (DSClass) and frequent pattern min-
ing (DSFPM).

(DSO), clustering (DSC), classification (DSClass) or frequent pattern mining (DSFPM) are
typically quite different and the benefit of sharing methods would be minimal.

DST classes implement mutable objects which can be changed without creating a copy. This
is more efficient, since otherwise a new copy of all data structures used by the algorithm
would be created for processing each data point. Mutable objects can be implemented in R
using environments or the recently introduced reference class construct (see package methods
by the R Core Team (2014)). Alternatively, pointers to external data structures in Java or
C/C++ can be used to create mutable objects.

We will restrict the following discussion to data stream clustering (DSC) since stream cur-
rently focuses on this task. stream currently provides moving windows and sampling from
a stream as data stream operators (DSO). The operators provide simple functionality which
can be used by other tasks and we will discuss them in the context of clustering. Packages
which cover the other tasks using the stream framework are currently under development.

5.1. Introduction to data stream clustering (DSC)

Data stream clustering algorithms are implemented as subclasses of the abstract class DSC (see
Figure 11). First we differentiate between different interfaces for clustering algorithms. DSC_R
provides a native R interface, while DSC_MOA (available in streamMOA) provides an interface
to algorithms implemented for the Java-based MOA framework. DSCs implement the online
process as subclasses of DSC_Micro (since it produces micro-clusters) and the offline process
as subclasses of DSC_Macro. To implement the typical two-stage process in data stream
clustering, stream provides DSC_TwoStage which can be used to combine any available micro
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6. Evaluation of data stream clustering

6.1. Introduction

Evaluation of data stream mining is an important issue. The evaluation of conventional
clustering is discussed in the literature extensively and there are many evaluation criteria
available. For an overview we refer the reader to the popular books by Jain and Dubes (1988)
and Kaufman and Rousseeuw (1990). However, this evaluation only measures how well the
algorithm learns static structure in the data. Data streams often exhibit concept drift and
it is important to evaluate how well the algorithm is able to adapt to these changes. The
evaluation of data stream clustering is still in its infancy. The current state of the evaluation
of data stream mining methods including clustering is described in the books by Aggarwal
(2007) and Gama (2010), and the papers by Kremer, Kranen, Jansen, Seidl, Bifet, Holmes,
and Pfahringer (2011) and Gama, Sebastiao, and Rodrigues (2013).

In the following we will discuss how stream can be used to evaluate clustering algorithms in
terms of learning static structures and clustering dynamic streams.

6.2. Evaluation of clustering static data streams

Evaluation of how well an algorithm is able to learn static structures in a data stream which
does not exhibit concept drift is performed in stream via

evaluate(dsc, dsd, measure, n = 100, type = c("auto", "micro", "macro"),
assign = "micro", assignmentMethod = c("auto", "model", "nn"),
noise = c("class", "exclude"), ...),

where dsc is the evaluated clustering. n data points are taken from dsd and used for eval-
uation. The evaluation measure is specified in measure. Several measures can be specified
as a vector of character strings. For evaluation, the points are assigned to the clusters in
the clustering in dsc using get_assignment (). By default the points are assigned to micro-
clusters, but it is also possible to assign them to macro-cluster centers instead (assign =
"macro"). New points can be assigned to clusters by the rule used in the clustering algo-
rithm (assignmentMethod = "model") or using nearest-neighbor assignment ("nn"). If the
assignment method is set to "auto" then model assignment is used when available and oth-
erwise nearest-neighbor assignment is used. The initial assignments are aggregated to the
level specified in type. For example, for a macro-clustering, the initial assignments will be
made by default to micro-clusters and then these assignments will be translated into macro-
cluster assignments using the micro- to macro-cluster relationships stored in the clustering
and available via microToMacro(). This separation between assignment and evaluation type
is especially important for data with non-spherical clusters where micro-clusters are linked
together in chains produced by a macro-clustering algorithm based on hierarchical clustering
with single-link or reachability. How noise is handled is controlled by noise. Noise points in
the data can be considered forming their own class. This is typically appropriate for external
validity measures, however, for some internal validity measures using noise points is prob-
lematic since the noise data points will not form a compact cluster and thus negatively effect
measures like the sum of squares. Therefore, for some internal measures, it is more consistent
to exclude noise points.
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Figure 19: Bars and Gaussians data set.

7. Example applications

7.1. Experimental comparison of different algorithms

Providing a framework for rapid prototyping new data stream mining algorithms and com-
paring them experimentally is the main purpose of stream. In this section we give a more
elaborate example of how to perform a comparison between several algorithms.

First, we set up a static data set. We extract 1500 data points from the Bars and Gaussians
data stream generator with 5% noise and put them into a DSD_Memory. This object is used to
replay the same part of the data stream for each algorithm. We will use the first 1000 points
to learn the clustering and the remaining 500 points for evaluation.

R> set.seed(1000)

R> library("stream")

R> stream <- DSD_Memory (DSD_BarsAndGaussians(noise = .05), n = 1500)
R> stream

Memory Stream Interface

Class: DSD_Memory, DSD_R, DSD_data.frame, DSD

With 4 clusters and O outliers in 2 dimensions

Contains 1500 data points - currently at position 1 - loop is FALSE

R> plot(stream)
Figure 19 shows the structure of the data set. It consists of four clusters, two Gaussians and

two uniformly filled, slightly rotated rectangular clusters. The Gaussian and the bar to the
right have 1/3 the density of the other two clusters.
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8. Conclusion and future work

Package stream is a data stream modeling framework for R that provides both, a variety
of data stream generation tools as well as a component for performing data stream mining
tasks. The flexibility offered by the framework allows the user to create a multitude of easily
reproducible experiments to compare the performance of these tasks. While R is not an ideal
environment to process high-throughput streams in real-time, stream provides an infrastruc-
ture to develop and test these algorithms. stream can be directly used for applications where
new points are produced at slower speeds (less than 100,000 points per second depending on
the algorithm). Another important application of stream is for processing data point by point
which otherwise would not fit into main memory.

The presented infrastructure can be extended by adding new data sources and algorithms, or
by defining whole new data stream mining tasks. We have abstracted each component to only
require a small set of functions that are defined in each base class. Writing the framework
in R means that developers have the ability to design components either directly in R, or
implement components in Java, Python or C/C++, and then write a small R wrapper as we
did for some MOA algorithms in streamMOA. This approach makes it easy to experiment
with a multitude of algorithms in a consistent way.

Currently, stream focuses on the data stream clustering and outlier detection tasks, but
we are working on incorporating classification (incorporating the algorithms interfaced by
RMOA (Wijffels 2014)) and frequent pattern mining algorithms as an extension of the base
DST class.
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